Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 11(12): 3424-3435, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31742335

RESUMO

Within-species variation in genome size has been documented in many animals and plants. Despite its importance for understanding eukaryotic genome diversity, there is only sparse knowledge about how individual-level processes mediate genome size variation in populations. Here, we study a natural population of the rotifer Brachionus asplanchnoidis whose members differ up to 1.9-fold in diploid genome size, but were still able to interbreed and produce viable offspring. We show that genome size is highly heritable and can be artificially selected up or down, but not below a certain basal diploid genome size for this species. Analyses of segregation patterns in haploid males reveal that large genomic elements (several megabases in size) provide the substrate of genome size variation. These elements, and their segregation patterns, explain the generation of new genome size variants, the short-term evolutionary potential of genome size change in populations, and some seemingly paradoxical patterns, like an increase in genome size variation among highly inbred lines. Our study suggests that a conceptual model involving only two variables, 1) a basal genome size of the population, and 2) a vector containing information on additional elements that may increase genome size in this population (size, number, and meiotic segregation behavior), can effectively address most scenarios of short-term evolutionary change of genome size in a population.


Assuntos
Tamanho do Genoma/genética , Genoma Helmíntico/genética , Rotíferos/genética , Animais , Evolução Molecular , Feminino , Variação Genética , Genética Populacional , Componentes Genômicos/genética , Masculino , Meiose , Rotíferos/citologia
2.
Hydrobiologia ; 796(1): 59-75, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34764495

RESUMO

Genome size in the rotifer Brachionus asplanchnoidis, which belongs to the B. plicatilis species complex, is greatly enlarged and extremely variable (205-407 Mbp). Such variation raises the question whether large genome size differences among individuals might cause reproductive barriers, which could trigger speciation within this group by restricting gene flow across populations. To test this hypothesis, we used B. asplanchnoidis clones from three geographic populations and conducted assays to quantify reproductive isolation among clones differing in genome size, and we examined the population structure of all three populations using amplified fragment length polymorphisms (AFLPs). AFLPs indicated that these populations were genetically separated, but we also found hints of natural gene flow. Clones from different populations with genome size differences of up to 1.7-fold could interbred successfully in the laboratory and give rise to viable, fertile 'hybrid' offspring. Genome sizes of these 'hybrids' were intermediate between those of their parents, and fitness in terms of male production, population growth, and egg development time was not negatively affected. Thus, we found no evidence for reproductive isolation or nascent speciation within B. asplanchnoidis. Instead, our results suggest that gene flow within this species can occur despite a remarkably large range of genome sizes.

3.
Plant Cell ; 25(6): 2002-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23792370

RESUMO

The Chinese lantern phenotype or inflated calyx syndrome (ICS) is a postfloral morphological novelty in Physalis. Its origin is associated with the heterotopic expression of the MADS box gene 2 from Physalis floridana (MPF2) in floral organs, yet the process underlying its identity remains elusive. Here, we show that MPF3, which is expressed specifically in floral tissues, encodes a core eudicot APETALA1-like (euAP1) MADS-domain protein. MPF3 was primarily localized to the nucleus, and it interacted with MPF2 and some floral MADS-domain proteins to selectively bind the CC-A-rich-GG (CArG) boxes in the MPF2 promoter. Downregulating MPF3 resulted in a dramatic elevation in MPF2 in the calyces and androecium, leading to enlarged and leaf-like floral calyces; however, the postfloral lantern was smaller and deformed. Starch accumulation in pollen was blocked. MPF3 MPF2 double knockdowns showed normal floral calyces and more mature pollen than those found in plants in which either MPF3 or MPF2 was downregulated. Therefore, MPF3 specifies calyx identity and regulates ICS formation and male fertility through interactions with MPF2/MPF2. Furthermore, both genes were found to activate Physalis floridana invertase gene 4 homolog, which encodes an invertase cleaving Suc, a putative key gene in sugar partitioning. The novel role of the MPF3-MPF2 regulatory circuit in male fertility is integral to the origin of ICS. Our results shed light on the evolution and development of ICS in Physalis and on the functional evolution of euAP1s in angiosperms.


Assuntos
Flores/genética , Proteínas de Domínio MADS/genética , Physalis/genética , Proteínas de Plantas/genética , Fertilidade/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Variação Genética , Hibridização In Situ , Proteínas de Domínio MADS/metabolismo , Filogenia , Physalis/crescimento & desenvolvimento , Physalis/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/metabolismo , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
4.
Planta ; 236(4): 1247-60, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22711285

RESUMO

The inflated calyx syndrome (ICS) is a post-floral novelty within Solanaceae. Previous work has shown that MPF2-like MADS-box genes have been recruited for the development and evolution of ICS through heterotopic expression from vegetative to floral organs. ICS seems to be a plesiomorphic trait in Physaleae, but it has been secondarily lost in some lineages during evolution. We hypothesized that molecular and functional divergences of MPF2-like proteins might play a role in the loss of ICS. In this study we analyzed the phylogeny, selection and various functions of MPF2-like proteins with respect to the evolution of ICS. Directional selection of MPF2-like orthologs toward evolution of ICS was detected. While auto-activation capacity between proteins varies in yeast, MPF2-like interaction with floral MADS-domain proteins is robustly detected, hence substantiating their integration into the floral developmental programs. Dimerization with A- (MPF3) and E-function (PFSEP1/3) proteins seems to be essential for ICS development within Solanaceae. Moreover, the occurrence of the enlarged sepals, reminiscent of ICS, and MPF2-like interactions with these specific partners were observed in transgenic Arabidopsis. The interaction spectrum relevant to ICS seems to be plesiomorphic, reinforcing the plesiomorphy of this trait. The inability of some MPF2-like to interact with either the A-function or any of the E-function partners characterized is correlated with the loss of ICS in the lineages that showed a MPF2-like expression in the calyx. Our findings suggest that, after recruitment of MPF2-like genes for floral development, diversification in their coding region due to directional selection leads to a modification of the MADS-domain protein interacting spectrum, which might serve as a constraint for the evolution of ICS within Solanaceae.


Assuntos
Evolução Molecular , Flores/genética , Proteínas de Domínio MADS/genética , Solanaceae/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Quimera , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Biblioteca Gênica , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Seleção Genética , Solanaceae/crescimento & desenvolvimento , Solanaceae/metabolismo
5.
J Hered ; 102(4): 409-15, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21576287

RESUMO

Transitions to obligate asexuality have been documented in almost all metazoan taxa, yet the conditions favoring such transitions remained largely unexplored. We address this problem in the rotifer Brachionus calyciflorus. In this species, a polymorphism at a single locus, op, can result in transitions to obligate parthenogenesis. Homozygotes for the op allele reproduce strictly by asexual reproduction, whereas heterozygous clones (+/op) and wild-type clones (+/+) are cyclical parthenogens that undergo sexual reproduction at high population densities. Here, we examine dosage effects of the op allele by analyzing various life-history characteristics and population traits in 10 clones for each of the 3 possible genotypes (op/op, +/op, and +/+). For most traits, we found that op/op clones differed significantly (P < 0.05) from the 2 cyclical parthenogenetic genotypes (+/+ and +/op). By contrast, the 2 cyclical parthenogenetic genotypes were almost indistinguishable, except that heterozygote individuals were slightly but significantly smaller in body size compared with wild-type individuals. Overall, this indicates that the op allele is selectively neutral in the heterozygous state. Thus, selective sweeps of this allele in natural populations would first require conditions favoring the generation of homozygotes. This may be given by inbreeding in very small populations or by double mutants in very large populations.


Assuntos
Alelos , Evolução Molecular , Partenogênese/genética , Fenótipo , Polimorfismo Genético/genética , Rotíferos/genética , Animais , Tamanho Corporal , Dosagem de Genes/genética , Genética Populacional , Heterozigoto , Modelos Genéticos , Óvulo/citologia , Densidade Demográfica , Dinâmica Populacional , Rotíferos/fisiologia
6.
BMC Evol Biol ; 11: 90, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21473744

RESUMO

BACKGROUND: Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. RESULTS: We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels--within and among genealogical species--and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. CONCLUSIONS: Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.


Assuntos
Evolução Molecular , Especiação Genética , Genoma Helmíntico , Rotíferos/genética , Animais , Dados de Sequência Molecular , Filogenia , Rotíferos/classificação , Rotíferos/isolamento & purificação
7.
PLoS One ; 5(9)2010 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-20862222

RESUMO

BACKGROUND: Asexuality has major theoretical advantages over sexual reproduction, yet newly formed asexual lineages rarely endure. The success, or failure, of such lineages is affected by their mechanism of origin, because it determines their initial genetic makeup and variability. Most previously described mechanisms imply that asexual lineages are randomly frozen subsamples of a sexual population. METHODOLOGY/PRINCIPAL FINDINGS: We found that transitions to obligate parthenogenesis (OP) in the rotifer Brachionus calyciflorus, a small freshwater invertebrate which normally reproduces by cyclical parthenogenesis, were controlled by a simple Mendelian inheritance. Pedigree analysis suggested that obligate parthenogens were homozygous for a recessive allele, which caused inability to respond to the chemical signals that normally induce sexual reproduction in this species. Alternative mechanisms, such as ploidy changes, could be ruled out on the basis of flow cytometric measurements and genetic marker analysis. Interestingly, obligate parthenogens were also dwarfs (approximately 50% smaller than cyclical parthenogens), indicating pleiotropy or linkage with genes that strongly affect body size. We found no adverse effects of OP on survival or fecundity. CONCLUSIONS/SIGNIFICANCE: This mechanism of inheritance implies that genes causing OP may evolve within sexual populations and remain undetected in the heterozygous state long before they get frequent enough to actually cause a transition to asexual reproduction. In this process, genetic variation at other loci might become linked to OP genes, leading to non-random associations between asexuality and other phenotypic traits.


Assuntos
Nanismo/veterinária , Partenogênese , Rotíferos/fisiologia , Animais , Nanismo/genética , Nanismo/fisiopatologia , Feminino , Masculino , Linhagem , Ploidias , Reprodução , Rotíferos/genética
8.
Planta ; 231(3): 767-77, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20033229

RESUMO

Floral and vegetative development of plants is dependent on the combinatorial action of MADS-domain transcription factors. Members of the STMADS11 subclade, such as MPF1 of Physalis, are abundantly expressed in leaves as well as in floral organs, but their function is not yet clear. Our studies with transgenic Arabidopsis that over-express MPF1 suggest that MPF1 interacts with SOC1 to determine flowering time. However, MPF1 RNAi-mediated knockdown Physalis plants revealed a complex phenotype with changes in flowering time, plant architecture and seed size. Flowering of these plants was delayed by about 20% as compared to wild type. Expression of PFLFY is upregulated in the MPF1 RNAi lines, while PFFT and MPF3 genes are strongly repressed. MPF1 interacts with a subset of MADS-domain factors, namely with PFSOC1 in planta, and with PFSEP3 and PFFUL in yeast, supporting a regulatory role for this protein in flowering. The average size of seeds produced by the transgenic MPF1 RNAi plants is increased almost twofold. The height of these plants is also increased about twofold, but most axillary buds are stunted when compared to controls. Taken together, this suggests that members of the STMADS11 subclade act as positive regulators of flowering but have diverse functions in plant growth.


Assuntos
Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/fisiologia , Physalis/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Flores/genética , Flores/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Physalis/genética , Physalis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/metabolismo
9.
Mol Biol Evol ; 26(11): 2463-73, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19608636

RESUMO

The Chinese lantern, which is the inflated calyx syndrome (ICS) of Physalis, is formed by MPF2 in the presence of the plant hormones, cytokinin and gibberellin. MPF2 knockdown mutants of Physalis have small leaves, no ICS, and are male sterile, thus, revealing three MPF2-related functions. Of the close relatives of Physalis, Tubocapsicum has only a rudimentary calyx, whereas others, like the Withania species, have ICS. From all Withania samples tested, two classes of MPF2-like orthologs, MPF2-like-A and MPF2-like-B, were isolated, whereas only the latter class was obtained from tetraploid Tubocapsicum. Though distinct differences can be observed between MPF2-like-A and MPF2-like-B proteins, that is MPF2-like-A proteins have an aberrant structure in that they have a three amino acid deletion in their C-domain and an eight amino acid extension at the C-terminal end, MPF2-like-A genes are phylogenetically closer to the Physalis MPF2-like genes. Unlike MPF2-like-B, the overexpression of MPF2-like-A in Arabidopsis revealed extra large sepals thus suggesting that MPF2-like-A genes are very likely responsible for the ICS formation in Withania. This correlated with the expression pattern of MPF2-like-A in vegetative and flower tissues, whereas MPF2-like-B is expressed only in vegetative tissues of Withania. In Tubocapsicum, however, MPF2-like-B RNA is detectable in all tissues tested. Finally, positive Darwinian selection was observed in the branch leading to Physalis MPF2-like and Withania MPF2-like-A proteins, followed by purifying selection once the trait had evolved. By contrast, purifying selection was detected for all other MPF2-like proteins tested. The contribution of the MPF2-like gene duplication to subfunctionalization is discussed.


Assuntos
Flores/genética , Proteínas de Plantas/genética , Seleção Genética/fisiologia , Solanaceae/genética , Arabidopsis/genética , Southern Blotting , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Seleção Genética/genética , Solanaceae/crescimento & desenvolvimento , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...